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Abstract

We present ~ one month of high time-resolution, direct, in situ measurements of gas-
phase glyoxal acquired during the BEARPEX 2007 field campaign. The research site,
located on a ponderosa pine plantation in the Sierra Nevada mountains, is strongly
influenced by biogenic volatile organic compounds (BVOCs); thus this data adds to the
few existing measurements of glyoxal in BVOC-dominated areas. The short lifetime of
glyoxal of ~ 1h, the fact that glyoxal mixing ratios are much higher during high tem-
perature periods, and the results of a photochemical model demonstrate that glyoxal is
strongly influenced by BVOC precursors during high temperature periods.

A zero-dimensional box model using near-explicit chemistry from the Leeds Mas-
ter Chemical Mechanism v3.1 is used to investigate the processes controlling glyoxal
chemistry during BEARPEX 2007. The model shows that MBO is the most important
glyoxal precursor (~ 67%), followed by isoprene (~ 26%) and methylchavicol (~ 6%),
a precursor previously not commonly considered for glyoxal production. The model
calculates a noon lifetime for glyoxal of ~ 0.9 h, making glyoxal well suited as a local
tracer of VOC oxidation in a forested rural environment; however, the modeled glyoxal
mixing ratios over-predict measured glyoxal by a factor 2 to 5. Although several param-
eters, such as an approximation for advection and increased glyoxal loss to aerosol
can improve the model measurement discrepancy, reduction in OH is by far the most
effective. Reducing OH to half the measured values, which is suggested by preliminary
OH measurements using a different technique, decreases the glyoxal over-prediction
from a factor of 2.4 to 1.1, as well as the overprediction of HO, from a factor of 1.64 to
1.14.

1 Introduction

Ozone (O3) and aerosols influence climate (Intergovernmental Panel on Climate
Change, 2007) and have a direct impact on human health (Bates, 1993; Jakab et al.,
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1995) and the biosphere (Karnosky et al., 1996; Percy et al., 2002). It is well estab-
lished that the formation of O5 and secondary organic aerosol (SOA), which is an im-
portant component of ambient aerosol (Zhang et al., 2007), are both directly tied to the
gas-phase oxidation of volatile organic compounds (VOCs), in particular in the VOC-
HO,-NO, catalytic cycle (HO, = OH +HO,, NO, = NO + NO,) (Kroll and Seinfeld, 2008;
Wood et al., 2010; Herndon et al., 2008). Substantial challenges remain, however, in
modeling SOA (de Gouw et al., 2005; Volkamer et al., 2006; Goldstein and Galbally,
2007; Carlton et al., 2009; Hallquist et al., 2009) and O; away from urban centers
(e.g., Trainer et al., 1987; Plummer et al., 1996). The challenges for O; are especially
pronounced in rural, forested areas with high biogenic VOC emissions, e.g., terpenes,
isoprene, and 2-methyl-3-buten-2-ol (MBO), which together constitute the majority of
global non-methane VOC emissions (Guenther et al., 2000). The failure of models
in rural vegetated regions, where BVOC and aldehyde reactivity dominates (Steiner
et al., 2008), indicates that more attention needs to be paid to primary emissions of
oxygenated VOC and the secondary production of oxygenates, of which a-dicarbonyls
are a subset.

Glyoxal, the smallest (a-)dicarbonyl, has a lifetime of only a few hours with respect
to photolysis and reaction with OH. Thus, glyoxal can be viewed as a local tracer of
VOC oxidation chemistry, which is advantageous for comparisons between models and
measurements. According to commonly used mechanisms available in the literature,
such as the National Center for Atmospheric Research (NCAR) Master Mechanism,
Leeds Master Chemical Mechanism (MCM), and the Mainz Isoprene Mechanism 2
(Madronich and Calvert, 1990; Bloss et al., 2005a,b; Taraborrelli et al., 2009) daytime
glyoxal production from BVOCs proceeds largely via reaction of OH, while reaction with
ozone contributes relatively little, making glyoxal a promising tracer of OH driven BVOC
oxidation. Furthermore, these mechanisms treat glyoxal solely as a higher generation
oxidation product of isoprene, MBO and terpenes. All stages of VOC oxidation can
contribute to O4 formation, and, for example for isoprene, more than one oxidation step
is required to reduce the volatility of products to the extent that partitioning-driven SOA
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formation is expected (e.g., Claeys et al., 2004; Edney et al., 2005; Paulot et al., 2009).
Thus, glyoxal measurements in rural, forested regions can provide a local tracer of VOC
oxidation chemistry, and may be used to test our understanding of higher generation
oxidation processes.

In addition to the challenges of modeling ozone in forested areas dominated by
BVOCs, there recently has been much focus on the often large discrepancies between
measured and modeled OH radical concentrations in areas dominated by BVOCs, es-
pecially isoprene (Tan et al., 2001; Thornton et al., 2002; Whalley et al., 2011; Ren
et al., 2008; Lelieveld et al., 2008; Hofzumahaus et al., 2009; Peeters et al., 2009;
Paulot et al., 2009; Peeters and Muller, 2010; Archibald et al., 2010; Stavrakou et al.,
2010; da Silva, 2010). Models typically underpredict OH, sometimes by up to an order
of magnitude (Lelieveld et al., 2008), relative to observations. A model of atmosphere-
forest exchange for the measurement site of the work described here under-predicts
OH by a factor of six (Wolfe et al., 2011). As OH radicals are the major oxidizing
species in the troposphere this disagreement has large implications for the ability of
models to accurately reproduce BVOC oxidation and resulting O3 and SOA formation.
A recent intercomparison of the different techniques employed for measuring ambient
OH showed slopes in the linear regressions of the daytime measurements of different
instruments of 1.01-1.13 for experiments in the SAPHIR chamber and 1.06—1.69 for
ambient measurements (Schlosser et al., 2009). This demonstrates that OH continues
to prove difficult to measure under all conditions. Clearly, BVOC oxidation and hence
production of BVOC oxidation products (OVOCs) depends critically on oxidant concen-
trations, with OH being of central importance. Thus, using OVOCs as tracers of BVOC
oxidation can provide insight into how rapidly BVOC oxidation is occurring, and, if the
OVOCs are produced primarily via reaction of OH with BVOCs, their formation will in
turn reflect ambient OH concentrations.

In addition to its use as tracer of VOC oxidation chemistry, glyoxal also is of current
interest due to its potential direct contribution to SOA formation (Carlton et al., 2007;
Volkamer et al., 2007; Corrigan et al., 2008; Noziére et al., 2008; Galloway et al., 2009;
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Shapiro et al., 2009; Tan et al., 2009). In models of SOA formation that include glyoxal,
it is often a substantial contributor (Carlton et al., 2007; Volkamer et al., 2007; Fu et al.,
2008; Ervens and Volkamer, 2010). It is thus important to validate glyoxal concen-
trations and chemistry in models by comparison with field-measurements. As model
studies show that oxidation of BVOCs contributes the majority of glyoxal on a global
scale (Fu et al., 2008; Myriokefalitakis et al., 2008; Stavrakou et al., 2009) a comparison
with glyoxal measurements for biogenic regions is particularly important.

The site of the Biosphere Effects on AeRosols and Photochemistry EXperiment
(BEARPEX) 2007 field campaign, near Blodgett Forest Research Station (BFRS) in the
Sierra Nevada, California, is located in a region influenced by high BVOC emissions,
in particular of MBO and isoprene as well as terpenes (Lamanna and Goldstein, 1999;
Holzinger et al., 2005; Bouvier-Brown et al., 2009) with regular and well characterized
meteorology. There have been a number of studies detailing the BVOCs observed at
the site (Lamanna and Goldstein, 1999; Holzinger et al., 2005; Bouvier-Brown et al.,
2009) making the location ideal for a detailed study of BVOC oxidation.

In this paper we present the first fast (< 1 min), high sensitivity, direct in situ measure-
ments of glyoxal, taken using the Madison Laser-Induced Phosphorescence (MAD-LIP)
Instrument (Huisman et al., 2008). We present a description of this new type of data-set
for glyoxal, which provides a new point of intercomparison for models in a region domi-
nated by BVOCs. We also present an analysis that investigates the factors influencing
glyoxal concentrations at the site and employ glyoxal as a local tracer of VOC oxidation
chemistry at the site, in particular with respect to oxidant levels and the sensitivity of
model glyoxal concentrations to OH.
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2 Measurements site and methods
2.1 Site description

Glyoxal mixing ratios were measured during the BEARPEX 2007 campaign at a re-
search site located on a ponderosa pine plantation in the Sierra Nevada mountains,
~ 80 km east of Sacramento, CA (38°53'42.9" N, 120°37'57.9" W). The site, on Sierra
Pacific Industries land, is at an elevation of 1315m and is near the Blodgett Forest
Research Station (BFRS) and has been described in detail previously (Goldstein et al.,
2000). It experiences a Mediterranean climate which is typically hot and dry during
the summer before transitioning to a cool, wet period starting in September. During
the summer, daytime wind is consistently out of the west to southwest while nighttime
wind is easterly to northeasterly. The cycling of polluted air from the Central Valley that
arrives in late afternoon and clean air from upslope at night leads to regular diurnal
patterns in many trace gases (e.g., Lamanna and Goldstein, 1999; Dillon et al., 2002;
Murphy et al., 2007; Wolfe et al., 2009).

2.2 Madison LIP instrument

Glyoxal data were collected using the Madison LIP Instrument, which has been de-
scribed in detail elsewhere (Huisman et al., 2008). Briefly, gas phase glyoxal was
detected via laser-induced phosphorescence and gated photon counting using a white-
type multipass cell. The inherent spectral and temporal resolution of the phosphores-
cence signal allowed a limit of detection (30) of 18 ppt, in 1 min during the BEARPEX
2007 deployment. For the BEARPEX 2007 deployment, the tower portion of the Madi-
son LIP Instrument was initially situated near the south tower, which was 10 m south
of the main scaffold tower, on which all measurements to which we compare our data
were made except meteorology. The inlet consisted of either 7.6 m or 1m of 1/2in OD
PTFE tube with no filters of any kind. Field tests showed no discernible inlet effects
with respect to length of inlet (cf. Huisman et al., 2008) and more recent tests have
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provided additional evidence that the length and material of inlet have negligible effect
on the glyoxal signal. While the instrument was near the tower, it used an inlet (7.6 m
1/2 in PTFE tube) at 3.7 m above ground level (a.g.l.) on the tower, where it remained
from 24 August—18 September (day of year, DOY, 236 to DOY 261. After 18 September
the instrument was placed on the tower, where it remained until the end of glyoxal mea-
surements on 27 September, DOY 270, with a short (1 m) inlet at 12.0m a.g.l. Tests
carried out in the field show that the data from 3.7m and 12m a.g.l. are comparable
during the daytime, though not necessarily identical (Huisman et al., 2008).

2.3 Other measurement techniques

A suite of measurements was available for BEARPEX 2007, including meteorolog-
ical parameters, such as wind speed and direction, air temperature, humidity, and
ozone concentration. Volatile organic compounds where measured using two gas
chromatographs with quadrupole mass spectrometers (GC-MS). Speciated acyl per-
oxy nitrate (APN) measurements were obtained via a thermal dissociation—chemical
ionization mass spectrometer. Laser-induced fluorescence instrumentation was used
for measurements of OH, HO, and NO,. Oxygenated organic aerosol (OOA) and
hydrocarbon-like organic aerosol (HOA) were obtained using an Aerodyne high-
resolution time-of-flight aerosol mass spectrometer. Aerosol surface area was esti-
mated using a scanning mobility particle sizer and observations of boundary layer
height were obtained from temperature, humidity, and wind profiles obtained with
a tethersonde during BEARPEX 2007. Details of the instrumentation and methods
used to obtain these data can be found in Supplement Sect. 1.1.
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3 Observations at BEARPEX 2007
3.1 General observations

There is only limited glyoxal data available in rural settings and to our knowledge we
present the first such data obtained that has a high time resolution obtained with an
instrument utilizing a direct, in situ detection method. The complete dataset for glyoxal
is presented in Fig. 1 along with ambient temperature and the biogenic VOCs isoprene
and MBO, which were the major precursors of glyoxal at the site. Meteorological condi-
tions at BRFS were dry and hot for the majority of the period for which glyoxal data was
collected. An abrupt change in weather occurred around DOY 256 (September 13),
after which temperatures were substantially lower. The data were divided into a “hot”,
“cold” and “intermediate” period as defined in the following: the hot period, DOY 240—
246 and 248-256, had an average high and low temperature of ~27, and ~ 18°C,
respectively. The cold period, DOY 247, 256-257, 261-266, had an average high and
low temperature of ~ 15, and ~ 8°C, respectively. No measurements were taken on
DOY 258-261. The intermediate period, DOY 267—-270, had an average high and low
temperature of ~ 19, and ~ 9°C, respectively, closer to the cold than the hot period,
but the data set was separated from the cold period because of substantially higher
glyoxal mixing ratios. The cause of the higher glyoxal mixing ratios during the interme-
diate period remains unclear, as the average diurnal temperature and VOC profile of
this period resembles that of the cold period. The raw data from the Madison LIP Instru-
ment do not show an offset and instrument data logs indicate normal operation during
this period, which followed the first rain falls of the season. The substantial change in
temperature from hot to cold period provides a basis for studying the dependence of
glyoxal concentrations on biogenic emissions, which are strongly tied to temperature
(e.g., Guenther et al., 1991; Schade et al., 2000).

The complete dataset for glyoxal, which spans DOY 236-270, had strong diurnal
trends with mean of 43.6 ppt, and median of 41.2 ppt, with 95% bounds of the com-
plete set of 4.6 ppt, to 121.7 ppt, (see Table 1). The measurement uncertainty was
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~20%. A previous measurement at this site by Spaulding et al. (2003) found glyoxal
mixing ratios of 6-83 ppt, during 10 days in August and September 2000, with average
mixing ratio 27 + 15ppt, and a diurnal profile weaker than that observed here. The
previous measurements, although occurring in a different year and with different mean
temperatures than those reported here, are still within one standard deviation of our
mean observations.

The BEARPEX 2007 campaign was located in a region with high BVOC emissions, in
particular the glyoxal precursors isoprene and MBO. Thus a strong influence of BVOCs
is expected on glyoxal at the site and comparison of the hot and cold period confirms
this (see Fig. 2): there is a large difference between hot and cold period in BVOC
concentrations and OVOCs that only form from BVOCs, e.g., isoprene, MBO, MVK.
Glyoxal shows a similar, but somewhat smaller difference, whereas the anthropogenic
tracer propene shows quite different behavior (see Fig. 2). Similarly, daytime concen-
trations of toluene at the site are essentially unchanged between the two periods, as
are those of benzene and other anthropogenic precursors/tracers. Thus, the measure-
ments qualitatively support that there is a strong biogenic influence on glyoxal at the
site, and the results from the photochemical model described in Sect. 4.1 supports this.

The correlation of half-hourly glyoxal measurements to measurements of known gly-
oxal BVOC precursors and BVOC oxidation products are high, whereas correlations
with known anthropogenic glyoxal precursors, such as toluene, benzene and acety-
lene are lower. During the hot period, the strongest correlation was observed with
the BVOC oxidation products MPAN (R? = 0.59, n = 362 points), and MVK (R? =0.41,
n=671), whereas correlations with anthropogenic tracers were substantially smaller,
see Table S1. Hot (and cold) period glyoxal was very poorly correlated (R? < 0.10) with
the total OA and OOA factors as measured by Aerosol Mass Spectrometer (AMS) see
Table S1. In addition to the poorer correlations of glyoxal with anthropogenic glyoxal
precursors, the concentrations of these precursors were low, so that production rates
from the BVOCs are much higher, as discussed in Sect. 4.1.
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3.2 Deposition

The profile of glyoxal on many nights approximated a simple exponential decay, al-
lowing an inference of the deposition rate by fitting in analogy to the method used by
Sumner et al. (2001). Six nights were selected which could be fit well with a single-
exponential decay in both glyoxal and O3. The results of these fits are presented in
Fig. 3, which also includes information on the slope of measured CO during the fit-
ting period (0.8 to 0.2d; 19.2 to 4.6 h), on a given night in the color of each point. It
seems likely that those points exhibiting the least slope in CO indicate a consistent
airmass, a requirement for using the decay to fit deposition. The average correlation
coefficient between the inferred deposition rates of glyoxal and O3 within each night is
good (H2 =0.68), in agreement with the results of Sumner et al. (2001) for formalde-
hyde, but the overall correlation is relatively poor (F.’2 =0.48, n =6 nights). Thus there
is some degree of variability between the relative deposition rates of both glyoxal and
O on different nights.

The average of the fitted exponential loss rate in glyoxal was —2.14 x 107°£2.7 x
10767, which (assuming a nocturnal boundary layer of 70 m, Choi et al., 2010b) cor-
responds to a deposition velocity of approximately 0.15cm 3‘1, reasonably consistent
with the value of Volkamer et al. (2007) of 0.3cm s Equating the observed exponen-
tial decay to deposition in this manner assumes that there are no important production
or loss processes, except for deposition. The photochemical model described in Sect. 4
showed that a 50% higher deposition velocity was required to reproduce the observed
loss rate, as according to the model there was slow nighttime glyoxal production.

4 Photochemical box model

We employ a photochemical model based on the reactions and kinetics in the Mas-
ter Chemical Mechanism (MCM) v. 3.1 (Jenkin et al., 1997; Saunders et al., 2003)
for comparison with observations to gain insight into the processes controlling glyoxal
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concentrations during BEARPEX 2007 and to evaluate the degree to which the MCM
can be used to represent glyoxal in this rural setting. The model uses the full MCM
chemistry for the following species and their oxidation products: isoprene, MBO, a-
pinene, B-pinene, acetylene (C,H,), benzene, and toluene. In addition to well-known
biogenic precursors of glyoxal such as MBO and isoprene, we include methylchavicol,
an oxygenated aromatic BVOC which was present in substantial concentrations (mean
daily maximum of ~ 0.3 ppb,,, with ~ 0.6 ppb,, as highest observed mixing ratio) during
BEARPEX 2007 (Bouvier-Brown et al., 2009). Oxidation of methylchavicol by OH pro-
duces glycolaldehyde (see mechanism, Fig. S3) with a direct yield of 37% (Lee et al.,
2006). While methylchavicol does not yield as much glycolaldehyde as MBO, which
has a corresponding direct yield of ~ 65% (Chan et al., 2009), it can produce additional
glyoxal via higher-generation oxidation processes involving the aromatic system (see
Fig. S3).

In all cases, the model was driven using half-hourly averaged observations of Og,
VOCs , campaign diurnally averaged NO,, and temperature period diurnally averaged
OH (cf. Sect. 2 for measurement techniques and Sect. 3.1 definition of temperature
periods). Different subsets of precursor VOCs were used to explore their influence and
determine the main glyoxal VOC precursors. HO, and intermediates such as MVK
were not driven to follow observations, providing comparisons of model and observa-
tions in addition to glyoxal. The model used the MCM in conjunction with standard
HO,-NO, cycling with (a) adjustment of yields and production mechanism of glyoxal
from isoprene and glycolaldehyde following Galloway et al. (2011), (b) adjustment of
MPAN + OH rate constant following the recommendation of Orlando et al. (2002), (c)
inclusion of dry deposition, (d) inclusion of loss of gas phase glyoxal to aerosol based
on Volkamer et al. (2007), (e) diurnal dilution factor following Pérez et al. (2009), (f)
inclusion of methylchavicol degradation chemistry. Details of the implementation are
presented in Supplement Sect. 1.2. The model was allowed to “spin-up” to provide ap-
proximate starting concentrations for those species for which no measurements were
available by looping over the same one hour period 25 times. After this equilibration,
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any species for which measurements were available were again set to match observa-
tion.

4.1 Base-case box model results

The optimized 0-D MCM-based box model described above was used to simulate
BEARPEX 2007 conditions and the diurnally averaged model results for the hot period
are shown together with the corresponding glyoxal measurement in Fig. 4. The model
predicts the following apportionment of production of glyoxal from precursor VOCs (and
their oxidation products) during the hot period: 66.8% MBO, 17.7% higher-generation
production from isoprene, 6.3% direct isoprene, 5.5% methylchavicol, and 3.7% other
(less than 1% each). The anthropogenic VOCs benzene and toluene, as well as acety-
lene and the pinenes only contribute to a small degree. Although methylchavicol was
a small source, contributing about 6% of glyoxal, it is the third most important precursor
VOC. Glycolaldehyde is the most important immediate precursor for glyoxal (~ 90%),
and ~ 75%, ~ 17%, ~ 6%, of glycolaldehyde arise from MBO, isoprene and methylchav-
icol oxidation, respectively. Altogether, these results corroborate the notion that the ma-
jority of hot period glyoxal production during BEARPEX 2007 was biogenic in nature,
dominated by production from MBO and isoprene.

According to the model, glyoxal has a short (~ 0.9 h) daytime lifetime. The calculated
average loss rate and equivalent lifetime in hours as a function of time of day for glyoxal
are displayed in Fig. S5. The nighttime loss rate is dominated by reaction with OH and
by deposition (cf. discussion of deposition in Sect. 3.2), while daytime loss rate is driven
by photolysis, reaction with OH, and dilution with background air (Pérez et al., 2009),
all contributing about equally at noon, and aerosol uptake contributing about half of
each of the former. The short lifetime of glyoxal makes it ideally suited as a local tracer
of VOC oxidation chemistry.

A striking feature of Fig. 4 is the degree of over-prediction of the model compared
to the measurements, which is significantly outside of the measurement uncertainty of
20%. In the following section we describe a sensitivity analysis of the parameters that
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were found to be most effective at influencing this over-prediction using only isoprene
and MBO as glyoxal precursors. Using the full set of precursor VOCs, with a resulting
1005 species in the MCM is much more computationally demanding than using only
MBO and isoprene (219 species in the MCM). In addition, MBO and isoprene contribute
the majority of the over-prediction as they produce ca. 90% of glyoxal.

4.2 Model sensitivity analysis

In this section we present an analysis of which model parameters were found to most
strongly influence the model over-prediction of glyoxal. The following sinks and sources
were investigated but found not to substantially contribute to the over-prediction:

— In order for low NO, chemistry to lower glyoxal noticeably unphysical rate con-
stants for the RO, + HO, reaction had to be employed. In addition, the model
employed here matched low NO, chamber studies of MBO and isoprene very
well (Galloway et al., 2011).

— Decreasing glyoxal concentrations noticeably by increased mixing with back-
ground air via “vertical dilution” required unphysical dilution rate constants.

— Increasing the daytime deposition velocity by an order of magnitude from the mea-
sured nighttime values in view of the recent work by Karl et al. (2010) had only
a marginal (~ 10%) effect.

— Reducing the glyoxal yield for the reaction of OH with glycolaldehyde clearly re-
duces glyoxal concentrations, however, a reduction to a yield of 0.045 from the
original value of 0.29 was required to achieve agreement with average glyoxal
measurements. In addition, the yield in the model was tested with chamber exper-
iments of MBO oxidation, which included glycolaldehyde measurements, follow-
ing BEARPEX 2007 with no observable change in instrument performance and
hence should be optimized for this study. In other words, even if the measured
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glyoxal concentration is biased by some unknown systematic error, analysis of in-
strument performance strongly indicates that this should match between the field
and chamber studies.

The sensitivity of model glyoxal to three parameters will be discussed in more detail:
gas-to-aerosol partitioning, altered OH radical concentration, and a treatment of trans-
port.

4.2.1 Gas-to-aerosol partitioning

Loss to aerosol has been proposed as an important sink of glyoxal in Mexico City
(Volkamer et al., 2007). However, a number of factors are expected to make aerosol
less important as a sink during BEARPEX 2007: the aerosol surface areas are about
an order of magnitude lower (average aerosol surface areas of ~ 100-200 mm? m'3).
It has been demonstrated that glyoxal uptake mainly depends on aerosol liquid water
content (Volkamer et al., 2009), which is expected to be quite low for the dry conditions
at BEARPEX 2007 (average daytime and nighttime relative humidity 24.2 +5.6% and
45.7 £10.1%, respectively). These facts imply that aerosol loss was not an important
sink term for glyoxal during BEARPEX 2007. Additional insight into the role of aerosol
as a sink for glyoxal was obtained by analyzing the difference between measured and
modeled glyoxal as a function of observed aerosol surface area in model runs that
did not include an aerosol loss term (see Fig. S2). If aerosol loss corresponds to
an important sink of glyoxal, model-measurement agreement should degrade at high
aerosol surface areas. However, this is not the case, in fact a small opposite trend was
observed. As a result an increase in the aerosol sink term may improve the average
glyoxal overprediction but does so by overcorrecting during periods with higher aerosol
load and hardly affecting the overprediction during periods of low aerosol loads. This
finding together with the low relative humidities make it unlikely that aerosol loss is one
of the main contributors to the over-prediction. However, if glyoxal can be taken up into
aerosol under the dry conditions during BEARPEX 2007, a higher value of y would
contribute to improving the average discrepancy between model and measurement.
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4.2.2 Reduced OH radical concentrations

Another means of reducing model glyoxal concentration is to alter the overall oxidation
process via changes to OH radical abundance. The results of a sensitivity analysis
demonstrate that glyoxal concentrations are very sensitive to OH levels, and results of
a model run in which OH was reduced by a factor of two are presented in Fig. 5. Using
half measured OH reduces overprediction of daytime glyoxal, defined as 0.35-0.8d,
or 8:30-19:00 h, from ~ 140% to ~ 10%, a reduction of glyoxal of slightly more than
a factor of two. In addition, the reduced OH improved the daytime model over-prediction
of HO, from (~ 64%) to (~ 14%). Thus, reducing OH to slow overall photochemistry is
very effective at improving model agreement with glyoxal and HO,.

It is worth discussing the merits of this sensitivity analysis, as the implications are
important within the context of the disagreements between modeled and measured OH
discussed in the introduction. The validity of a factor 2 reduction of the OH concentra-
tion in the model compared to the reported measurements appears questionable given
the measurement absolute accuracy of 32%, 20. Preliminary results from a recent
study by the PSU group during BEARPEX 2009 suggest that the measured daytime
OH concentrations at this site could potentially be a factor of 2.5 lower than determined
with the traditional measurement method used during BEARPEX 2007 (Brune et al.,
2010). The implied lower OH concentration refers to the OH concentration experienced
over the lifetime of glyoxal and not necessarily the OH concentration at the measure-
ment site. However, there is no reason to expect the OH concentrations to be substan-
tially different. The results show that reducing OH concentrations is one of the most
effective means of reducing the glyoxal and HO, over-predictions and this adjustment,
which is in general agreement with the preliminary findings of Brune et al. (2010), has
a larger effect than any of the previously discussed parameters, which at present do
not have any other corroboration. LaFranchi et al. (2009) found that calculated steady-
state concentrations of APNs were as much as two times measured values for the hot
period of BEARPEX 2007, despite the fact that the steady-state model is expected
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to work well under these conditions. The authors attributed this to uncertainties in the
chemistry of peroxy radicals, noting that a factor of three increase in the reaction rate of
acyl peroxy radicals with RO, greatly improved model-measurement agreement. Re-
ducing OH radical concentrations represents another potential solution, as this would
decrease the production rate of acyl peroxy radicals.

4.2.3 Truncated-Lagrangian-transport model

Transport of glyoxal was not treated explicitly in the 0-D box model. This shortcoming
can affect model glyoxal concentrations differently depending on whether the glyoxal
precursors are emitted primarily locally, such as MBO, or primarily upwind of the mea-
surement site, as is the case for isoprene. The 0-D model will overestimate glyoxal
production for the former case and underestimate it for the latter: MBO is only emitted
in a fairly limited spatial region upwind of the measurement site. Whereas in the box
model afternoon air masses have experienced MBO processing all day, in reality they
have only experienced MBO emissions with subsequent oxidation to glyoxal for a few
hours. Major emissions of isoprene occur at a distance from the measurement site and
isoprene has already been substantially processed (> 50%) when it arrives at the site.
Using the isoprene concentrations observed at the measurement site will under-predict
the amount of oxidation products from isoprene, which can be seen in the MVK (and
MACR) data shown in Fig. 6. As the daytime lifetime of glyoxal is ~ 1h, the lack of
inclusion of advection in the model is expected to have a limited effect, as transport
of 3h (the noon transport time from the edge of the MBO-emitting region to the mea-
surement site) will have lost most of the original glyoxal. As the 0-D model predicts too
much glyoxal, we investigate what the largest possible reduction in over-prediction as
a result of transport could be. In this approach we address the overestimate resulting
from the locally emitted MBO and neglect the underestimate resulting from isoprene.
This represents an upper-limit of the effect of transport.

Using emission maps from Steiner et al. (2007) and measured wind speeds, we cal-
culate the time that air at BFRS is influenced by MBO, for example ~ 3 h at midday. We
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construct a truncated-Lagrangian model in which the Lagrangian model run is initial-
ized when an air-mass with very low glyoxal and glycolaldehyde concentrations (1 x 1 0°
molecule cm'3) enters the MBO emitting area. For example: the point at noon was es-
timated to need 3.12h of transit time to reach the site from the edge of major MBO
emissions, so the model concentration of glycolaldehyde was set very low at 8.88h
during each day of the simulation. In this case, air with little glyoxal and glycolalde-
hyde enters the box at time = 8.88h. The air-mass then moves with the measured
wind-speeds up to the measurement site, which it reaches at noon, and the final value
then represents the noon-time model value at the measurement site. Similar runs are
performed for each half hour interval. The emission maps show that MBO emissions
are fairly homogeneous throughout this region and thus we use the measured MBO
concentrations, the most important glyoxal precursor for the entire transect. Site mea-
surements are also used to constrain the other parameters, such as isoprene. As
discussed above this is incorrect for isoprene, which has higher concentrations at the
entry to the MBO emitting area than our model assumes, and hence would increase
glyoxal concentration.

The effect of transport with this truncated Lagrangian model was tested using iso-
prene and MBO as precursors, which capture 90% of model glyoxal production in the
hot period. The upslope wind-flow lasted from about 0.3day to 0.8day (7—19h) on
average; no data points are thus reported outside that time. The resultant set of half-
hourly endpoints represent the daytime diurnal profile, with the influence of transport
reduced or removed (assuming that air entered the MBO emission region with very
low or zero concentration of these species). A dot is shown in Fig. 5, corresponding
to the endpoints of each of these model runs. Glycolaldehyde is on average reduced
to 86% of the original model level (not shown). This suggests that modeled concen-
trations of glycolaldehyde are only moderately too high due to the failure of the model
to treat transport, and hence the 0-D model is not a bad approximation for modeling
glycolaldehyde. As expected, the effect on glyoxal, largely a glycolaldehyde oxidation
product, is larger. However, the average reduction to 73% of the original prediction is
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not sufficient to bring the model into agreement with measurement. For this reason,
we conclude that transport alone is clearly not sufficient to explain the over-prediction
in modeled glyoxal. In fact, the effect is likely to be smaller, as glyoxal from isoprene is
underestimated.

4.3 Discussion

Analysis of the model results showed that the majority of glyoxal was formed by gly-
colaldehyde, which in turn was produced mainly from MBO, and to a lesser degree
from isoprene and methylchavicol, which is in agreement with the fact that the glyoxal
yield from MBO is substantially higher than from isoprene. The model included all
main known precursors for glyoxal that were measured during BEARPEX 2007 and
introduced methylchavicol as an additional one. The model substantially (~ factor2.5)
over-predicts glyoxal at the measurement site. As MBO contributes ~ 70% of glyoxal,
MBO oxidation also has to contribute the majority of the over-prediction. An upper-limit
estimate of the effect of transport on MBO processing improved model-measurement
disagreement but still had a substantial over-prediction (~ factor 1.8). The slight im-
provement is a result of the short lifetime of glyoxal during BEARPEX 2007, which
limits the effect of transport and supports the notion that glyoxal is a “local” tracer of
VOC oxidation chemistry. The effect of transport is expected to be diminished in the
model due to the underestimation of glyoxal from isoprene. It is more likely that trans-
port should increase glyoxal due to advection of precursors such as glycolaldehyde
(from isoprene) which has approximately twice the lifetime of glyoxal. Other factors
that could reduce the over-prediction are increased aerosol loss and a reduced yield of
glyoxal from glycolaldehyde. The latter seems unlikely as the work done by Chan et al.
(2009) used the Madison LIP instrument to parameterize glyoxal from glycolaldehyde.
Since aerosol formation is proportional to liquid water content, the very dry conditions
at BEARPEX eliminate aerosol as a significant sink. By far the most effective means to
reduce the model over-prediction is reducing the OH concentration, which in addition is
the only one supported by other evidence, i.e. the recent work by Brune et al. (2010).
In addition, this is the only parameter that also resulted in a substantial improvement
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of modeled HO, concentrations. The high sensitivity of glyoxal to OH is interesting
as one might expect OH levels to have little effect on glyoxal as it participates in both
production and destruction of glyoxal. The high sensitivity in the model stems from
three details of the underlying chemical mechanism and model: (1) the model is driven
with measured BVOC concentrations, not emissions, and hence increased OH results
directly in increased glycolaldehyde, (2) glyoxal is largely a higher-generation product
of BVOC oxidation and thus increased OH increases production of the precursor gly-
colaldehyde and how fast it is converted to glyoxal, and (3) reaction with OH is not
the dominant glyoxal loss channel. Clearly, a combination of adjustment of different
parameters can be employed to further improve the model to measurement disagree-
ment. However, such combinations without reduction in OH are not sufficient to reduce
modelled glyoxal while, for example, maintaining the correct shape of the diurnal cycle.

5 Conclusions

We present the first high time resolution glyoxal data obtained with a direct, in situ
detection method in a rural region dominated by BVOC emissions. Measurements of
glyoxal during the BEARPEX 2007 campaign were used to examine the influence of
BVOCs on glyoxal production and we conclude that during the hot period glyoxal pro-
duction was dominated by BVOCs. This is supported by the fact that the site is in
a region with much higher BVOC than anthropogenic VOC concentrations during high
temperature periods combined with the fact that the daytime lifetime of glyoxal is sub-
stantially shorter than the transport time from the edge of this region. This is further
supported by comparison between hot and cold period glyoxal concentrations. In ad-
dition, a photochemical model shows that most of hot period glyoxal production results
from BVOCs, primarily MBO and isoprene with a small contribution from methylchavi-
col, a species that had not previously been taken into account for glyoxal production.
In contrast to the recent work on formaldehyde by Choi et al. (2010a), no evidence
can be found that glyoxal is produced via oxidation of unknown/missing BVOC emis-
sions during the hot period. However, this does not imply that such BVOC emissions
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do not exist, as only some BVOCs produce glyoxal, whereas formaldehyde is a much
more common oxidation product. In addition, the glyoxal observed during the interme-
diate period cannot be explained with the VOCs measured at BFRS and hence it could
indicate an unknown precursor for glyoxal.

Globally, biogenic sources of glyoxal are predicted to exceed anthropogenic sources,
so measurements in rural areas are important and we present the first detailed dataset
of its kind. This data is also of interest to comparison with modeling studies of glyoxal
despite the limitations of measurements at a single ground site as it presents an analy-
sis of the processes controlling glyoxal concentrations in a biogenically influenced area.
Thus, the work contributes to the broader understanding of the tropospheric chemistry
of glyoxal.

The results of a photochemical model that was successfully tested using chamber
studies of isoprene and MBO oxidation were compared to data taken during BEARPEX
2007 showing a substantial over-prediction despite the reduction of higher-generation
yields of glyoxal from isoprene. An attempt to model the influence of MBO chemistry
more realistically by making an upper-limit estimate of the effect of transport show that
this only contributes to a small degree to the over-prediction as does loss of glyoxal to
aerosol. A reduction of OH concentrations was determined to be by far the most effec-
tive way to reduce glyoxal model concentrations, and in addition is the only adjustment
that has supporting evidence based on the recent work by Brune et al. (2010) and im-
proves model HO, concentrations. This demonstrates that glyoxal can be a useful local
tracer of VOC oxidation chemistry, in particular given its short photochemical lifetime.
In addition, we propose that the high sensitivity of glyoxal to OH makes it an especially
useful tracer for BVOC oxidation studies aimed at investigating OH-driven chemistry.

Supplementary material related to this article is available online at:
http://www.atmos-chem-phys-discuss.net/11/13655/2011/
acpd-11-13655-2011-supplement.pdf.
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Fig. 1. Overview of glyoxal measurements, separated by temperature period (red, blue, gray
corresponding to hot, cold, and intermediate period). Isoprene and MBO, the most important
glyoxal BVOC precursors, are included along with air temperature on the center axis on right.
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Fig. 2. Diurnal averages of glyoxal, temperature, example biogenic and anthropogenic species,
and HO, separated into hot, and cold period. Here the hot period spans 15d. The cold period
contains only data for which glyoxal was recorded. Error bars indicate the 1 standard deviation
envelope as calculated based on the variability in the data from day to day and neglecting
reported or calculated error from each measurement.
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Fig. 4. Diurnally averaged model results from the hot period showing the incremen-
tal contributions of various VOC precursors. The model VOC precursor subsets corre-
spond to: ISOP =isoprene; MBO = MBO; BTA =benzene, toluene, acetylene, and pinenes;
MCHAV = methylchavicol. Error bars are omitted from upper traces for clarity, all are approxi-
mately equal in magnitude to those shown for that of ISOP.
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Fig. 5. Model results for OH sensitivity study. Simulations were performed using ambient OH
and 1/2 OH using combined isoprene and MBO chemistry. The Truncated Lagrangian model
(daytime only) is shown for comparison. Error bars indicate the 1 standard deviation envelope
as calculated based on the variability in the data and model outputs, not reported errors.
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Fig. 6. Summary of model OVOCs and measurements as available, all in ppb. The model is
broadly able to predict MVK and MACR, while it exceeds measurements of glyoxal substan-
tially. The slight under-prediction of MVK and MACR is expected for the 0-D-box model as it
underestimates the contribution of isoprene oxidation, which is largely emitted upwind of the
measurement site. Error bars indicate the 1 standard deviation envelope as calculated based

on the variability in the data, not reported errors.
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